Evaluation of energy extraction of PV systems affected by environmental factors under real outdoor conditions

Author:

Hassan Muhammed A.ORCID,Bailek Nadjem,Bouchouicha Kada,Ibrahim Abdelhameed,Jamil Basharat,Kuriqi Alban,Nwokolo Samuel Chukwujindu,El-kenawy El-Sayed M.

Abstract

Abstract The global agenda to increase the renewable energy share has driven many countries and entities to harness solar energy from solar photovoltaic (PV) systems. However, the power generation of PV systems is strongly affected by climate conditions. Therefore, the main objective of this study is to analyze and predict the power generation of different PV technologies under arid desert climate conditions on an hourly basis. Two areas have been considered as case studies: Adrar in Algeria and Alice Springs in Australia. A total of nine physical models and input parameter combinations from six different power plants have been used and tested for the suitability of the proposed models for predicting the power yield of PV power plants depending on solar irradiance and other meteorological variables. Then, an ensemble learning technique is applied to improve the performance capabilities of the best-fit input combinations. The results reveal that the global irradiance, ambient air temperature, and relative humidity combination are the most related to the PV power output of all technologies under all-sky conditions and provide effective and efficient performance with the proposed ensemble learning, with an estimated accuracy of over 99%.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3