Climatology and trends of atmospheric water vapour transport in New Zealand

Author:

Krishna NithinORCID,Kingston Daniel G.ORCID,Mager Sarah M.ORCID

Abstract

AbstractAtmospheric moisture transport is crucial for understanding New Zealand’s climate dynamics, particularly with respect to extreme precipitation events. While the majority of previous studies have focussed on Atmospheric Rivers (ARs), this study examines the entire spectrum of water vapour transport and its link to extreme precipitation using 40 years (1981–2020) of Integrated Water Vapour Transport (IVT) data over the region. Although ARs are important drivers of extreme precipitation, they are infrequent as they account for less than 10% of total moisture transport at most coastal locations. Extreme water vapour transport (defined by the 90th percentile IVT threshold) corresponds more closely with precipitation extremes than ARs alone, even using an expanded AR detection range. Here, IVT is classified into strength categories from weak to strong. Over the study period, all but the weakest category of IVT has increased in frequency of occurrence over most of the South Island, while decreasing in northern North Island. Similarly, monthly IVT anomaly trends show a positive trend in the South Island and negative trend in the northern North Island during warmer months. Separate analysis of moisture weighted wind speeds (UV) and total column water vapour (TCWV) revealed that even though the dynamic component of IVT has decreased in many locations, the increase in TCWV across New Zealand is the driving factor underpinning the IVT trends. Correspondingly, these findings indicate the importance of analysis both dynamic and thermodynamic factors in seeking to understand hydrometeorological variation and when investigating the responses to climate change.

Funder

University of Otago

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3