Assessment and improvement of RegCM 4.6 coupled with CLM4.5 in simulation of land surface temperature in mainland China

Author:

Ren Yulong,Gao Xiaoqing,Liu YuanPu,Li ZhenChao,Liu WeiGang

Abstract

AbstractLand surface temperature(LST) is an important indicator to study climate change and test the performance of regional climate model simulation. RegCM4.6 is the representative version of regional climate model RegCM, which is coupled with advanced third-generation land surface model NCAR CLM4.5. Currently, RegCM4.6 has become an important tool to study regional climate change in China. However, its ability to simulate land surface temperature in mainland China and the reasons for its deviation have not been systematically studied, and targeted improvement work is lacking. The present study is the first to employ LST data collected from 809 Chinese meteorological stations from the last 30 years to comprehensively assess the ability of CLM4.5 to simulate LST. Sensitivity tests of soil thermal conductivity (STC) were carried out to improve the model. Although the coupled regional climate model could accurately simulate the temporal and spatial variation of LST, a cold bias of 2~8 °C existed for all of mainland China, which was larger in seasons with more precipitation and greater soil moisture than other seasons. Deviation increased from southeast to northwest. which was caused by the incoming long-wave radiation, sensible heat, and latent heat simulated. There was a significant linear relationship between the observed and simulated LSTs, with correlation coefficients for all the stations ranged from 0.75 to 0.9 (P < 0.001). The observed LST increased at a rate of 0.58 °C/decade, but the simulated LST increased at a lower rate. Assessment of three different STC schemes showed that the Lu-Ren scheme was the most suitable for LST simulation in mainland China. Developing a new STC scheme that considers the role of water vapor can effectively improve the model when used in mainland China.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3