Impacts of wintertime meteorological variables on decomposition of Phragmites australis and Solidago canadensis in the Balaton System

Author:

Anda AngelaORCID,Simon SzabinaORCID,Simon-Gáspár BrigittaORCID

Abstract

AbstractA field experiment was carried out in plant litter decomposition at three sites of the Balaton System (Balaton — Kis Balaton wetland — Zala Mouth) differing in their environment type during winter 2019/2020. The largest freshwater shallow lake in Central Europe (Carpathian Basin) is the Balaton, with a surface area of about 600 km2 and an average depth of 3.25 m. Right around the lake, a nutrient filtering system, the Kis-Balaton wetland, is functioning to avoid water deterioration and eutrophication. The aim of the study was to investigate crop-weather relations in two sample species, the widely distributed native P. australis and the allied S. canadensis incubated beneath the water using leaf-bag technique to characterise plant organ decomposition. Based on our results, the most consistent meteorological variable regarding decomposition process was global radiation (r =  − 0.62* to − 0.91**; r: correlation coefficient; * and ** mean that correlations are significant at the 0.05 and 0.01 levels), in each treatment. In modelling the decomposition process, out of eight meteorological variables, only the daily mean air temperatures and humidity were excluded from regression equations. On dominatingly windy days, with the increase in water temperature of the Zala Mouth, the sensitivity of the decomposition of S. canadensis litter tended to decrease as compared to P. australis. The remaining litter masses were in a Kis-Balaton > Balaton > Zala order, contrasting the water temperature gradient that decreased from the Zala to the Kis-Balaton wetland under wind-dominated conditions. Considering all sampling places in three aquatic ecosystems, there was a 2.2 and a 2.7% daily mean detritus mass loss in P. australis and S. canadensis, respectively. We concluded that the invasive S. canadensis litter decomposed more quickly than those of native P. australis, irrespective to sampling site. Increase in winter water temperature significantly promoted the litter decomposition of both plant species. The originality of the study is that it quantifies the litter decomposition for an Eastern European wetland, during wintertime.

Funder

Hungarian University of Agriculture and Life Sciences

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3