Abstract
AbstractLong-term reliability is one of the major requirements for automotive exhaust aftertreatment systems with selective catalytic reduction (SCR) using urea water solution (UWS) as NH3 carrier fluid. A high injection rate of UWS or unfavorable operating conditions may lead to formation of solid deposits, which decrease system efficiency by increasing backpressure and impairing ammonia uniformity. A reliable numerical prediction of deposit formation in urea SCR systems is desired for optimization of system design. However, comprehensive modeling of physical and chemical processes in the tailpipe as well as different time scale phenomena represents a challenging task. This study presents a comprehensive approach for modeling UWS injection, droplet impingement, liquid film and deposit formation based on CFD-simulation. An existing kinetic model for urea decomposition is integrated into the CFD code to predict solid by-product formation from wall films. Physical simulation time is extensively increased by substituting the Lagrange-particles with source terms of mass, momentum and energy reducing simulation time by a factor of 20. The comparison of measured and simulated results shows the capability of the presented modeling approach to predict position and chemical composition of solid deposits.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Pollution,Automotive Engineering
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献