Activation of AQP2 water channels by protein kinase A: therapeutic strategies for congenital nephrogenic diabetes insipidus

Author:

Ando FumiakiORCID

Abstract

Abstract Background Congenital nephrogenic diabetes insipidus (NDI) is primarily caused by loss-of-function mutations in the vasopressin type 2 receptor (V2R). Renal unresponsiveness to the antidiuretic hormone vasopressin impairs aquaporin-2 (AQP2) water channel activity and water reabsorption from urine, resulting in polyuria. Currently available symptomatic treatments inadequately reduce patients’ excessive amounts of urine excretion, threatening their quality of life. In the past 25 years, vasopressin/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) has been believed to be the most important signaling pathway for AQP2 activation. Although cAMP production without vasopressin is the reasonable therapeutic strategy for congenital NDI caused by V2R mutations, the efficacy of candidate drugs on AQP2 activation is far less than that of vasopressin. Results Intracellular distribution and activity of PKA are largely controlled by its scaffold proteins, A-kinase anchoring proteins (AKAPs). Dissociating the binding of AKAPs and PKA significantly increased PKA activity in the renal collecting ducts and activated AQP2 phosphorylation and trafficking. Remarkably, the AKAPs–PKA disruptor FMP-API-1 increased transcellular water permeability in isolated renal collecting ducts to the same extent as vasopressin. Moreover, derivatives of FMP-API-1 possessed much more high potency. FMP-API-1/27 is the first low-molecular-weight compound to be discovered that can phosphorylate AQP2 more effectively than preexisting drug candidates. Conclusion AKAP-PKA disruptors are a promising therapeutic target for congenital NDI. In this article, we shall discuss the pathophysiological roles of PKA and novel strategies to activate PKA in renal collecting ducts.

Publisher

Springer Science and Business Media LLC

Subject

Physiology (medical),Nephrology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3