Clinical features of autosomal recessive polycystic kidney disease in the Japanese population and analysis of splicing in PKHD1 gene for determination of phenotypes

Author:

Ishiko Shinya,Morisada NaoyaORCID,Kondo Atsushi,Nagai Sadayuki,Aoto Yuya,Okada Eri,Rossanti Rini,Sakakibara Nana,Nagano China,Horinouchi Tomoko,Yamamura Tomohiko,Ninchoji Takeshi,Kaito Hiroshi,Hamada Riku,Shima Yuko,Nakanishi Koichi,Matsuo Masafumi,Iijima Kazumoto,Nozu Kandai

Abstract

Abstract Background Autosomal recessive polycystic kidney disease (ARPKD) is caused by mutations in the PKHD1 gene. The clinical spectrum is often more variable than previously considered. We aimed to analyze the clinical features of genetically diagnosed ARPKD in the Japanese population. Methods We conducted a genetic analysis of patients with clinically diagnosed or suspected ARPKD in Japan. Moreover, we performed a minigene assay to elucidate the mechanisms that could affect phenotypes. Results PKHD1 pathogenic variants were identified in 32 patients (0–46 years). Approximately one-third of the patients showed prenatal anomalies, and five patients died within one year after birth. Other manifestations were detected as follows: chronic kidney disease stages 1–2 in 15/26 (57.7%), Caroli disease in 9/32 (28.1%), hepatic fibrosis in 7/32 (21.9%), systemic hypertension in 13/27 (48.1%), and congenital hypothyroidism in 3 patients. There have been reported that truncating mutations in both alleles led to severe phenotypes with perinatal demise. However, one patient without a missense mutation survived the neonatal period. In the minigene assay, c.2713C > T (p.Gln905Ter) and c.6808 + 1G > A expressed a transcript that skipped exon 25 (123 bp) and exon 41 (126 bp), resulting in an in-frame mutation, which might have contributed to the milder phenotype. Missense mutations in cases of neonatal demise did not show splicing abnormalities. Conclusion Clinical manifestations ranged from cases of neonatal demise to those diagnosed in adulthood. The minigene assay results indicate the importance of functional analysis, and call into question the fundamental belief that at least one non-truncating mutation is necessary for perinatal survival.

Funder

health labor sciences research grant

japan society for the promotion of science

Publisher

Springer Science and Business Media LLC

Subject

Physiology (medical),Nephrology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3