Magnetite geochemistry as a proxy for metallogenic processes: A study on sulfide-mineralized mafic–ultramafic intrusions peripheral to the Kunene Complex in Angola and Namibia

Author:

Milani LorenzoORCID,Oosthuizen Lize,Owen-Smith Trishya M.,Bybee Grant M.,Hayes Ben,Lehmann Jérémie,Jelsma Hielke A.

Abstract

AbstractTrace element concentrations in magnetite are dictated by the petrogenetic environment and by the physico-chemical conditions during magmatic, hydrothermal, or sedimentary processes. This makes magnetite chemistry a useful tool in the exploration of ore-forming processes. We describe magnetite compositions from Ni-Cu-(PGE)-sulfide mineralized rocks from seven mafic–ultramafic intrusions peripheral to the Mesoproterozoic AMCG (anorthosite-mangerite-charnockite-granite) suite of the Kunene Complex of Angola and Namibia to investigate metallogenic processes through the geochemical characterization of Fe-oxides, which were analyzed in-situ via Electron Probe Microanalysis (EPMA), and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). We identified magmatic magnetite, segregated from both a silicate liquid and an immiscible sulfide liquid. Elements like Cr, Co and V suggest that the sulfide-related magnetite segregated from a relatively primitive Fe-rich monosulfide solid solution (MSS). Secondary Cr-rich magnetite appears in intrusions with abundant chromite or Cr-spinel. Two types of hydrothermal magnetite were identified, related to the pervasive replacement of sulfides and a late-stage, low-T fluid circulation event. Magnetite replacing sulfides is associated with serpentinized ultramafic rocks and is preferentially observed in the intrusions with the highest base and precious metal tenors. The high concentration of Ni, Co, Cu, Pd, As and Sb in these grains is corroborated by the identification of micron-size PGE mineral inclusions. We infer that serpentinization during hydrothermal fluid circulation was accompanied by desulphurization of sulfides with metal remobilization and reconcentration to generate magnetite carrying Pd microinclusions. We suggest that the highly serpentinized ultramafic rocks in the Kunene Complex region may become a possible target for economic Ni-Cu-(PGE) mineralization.

Funder

University of Pretoria

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3