Sedimentary and metamorphic processes priming black shale for magmatic assimilation of sulfur: an example from the Virginia Formation, Minnesota, United States

Author:

Virtanen Ville J.ORCID,Heinonen Jussi S.,Märki LenaORCID,Galvez Matthieu E.,Molnár Ferenc

Abstract

AbstractThe copper-nickel(-platinum-group element) sulfide resources of the Duluth Complex, Minnesota, USA, formed by assimilation of sulfur from the Virginia Formation black shale. In the normal black shale of the Virginia Formation, sulfur is mainly hosted in disseminated pyrite, whereas mm-scale pyrrhotite laminae dominate in the sulfur-rich Bedded Pyrrhotite Unit. The Bedded Pyrrhotite Unit was the main supply of sulfur in some of the magmatic sulfide deposits but its origin has not been studied in detail. Using Raman spectroscopy, we show that the carbonaceous material within the regionally metamorphosed normal black shale is graphitized biogenic material. The Bedded Pyrrhotite Unit contains pyrobitumen that represents residues of oil that accumulated to porous horizons, which formed due to dissolution of precursor sedimentary clasts. Replacement of the clasts by quartz and sulfides facilitated the formation of the pyrrhotite laminae of the Bedded Pyrrhotite Unit, which likely occurred during regional metamorphism.The pyrite-bearing normal black shale experienced loss of H2O, Corg, and sulfur during devolatilization caused by the Duluth Complex. The contact-metamorphosed Bedded Pyrrhotite Unit shows no systematic depletion of volatiles and is the most Corg and sulfur-rich part of the Virginia Formation. During devolatilization, sulfur was preserved because unlike pyrite, pyrrhotite was stable. Consequently, magmatic assimilation of sulfur from the Bedded Pyrrhotite Unit required partial melting. Retrograde hydration introduced H2O, and possibly Corg, and sulfur, to the contact-metamorphosed Bedded Pyrrhotite Unit, which further affected the volatile budget. Our findings highlight why constraining diagenetic and regional metamorphic processes is important to understand magma-sediment interaction processes.

Funder

University of Helsinki

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3