Genesis of Devonian volcanic-associated Lahn-Dill-type iron ores — part I: iron mobilisation and mineralisation style

Author:

Schmitt LeanneORCID,Kirnbauer Thomas,Angerer Thomas,Volkmann Rebecca,Roddatis Vladimir,Wirth Richard,Klein Sabine

Abstract

AbstractFe-oxide deposits of the Lahn-Dill-type in the eastern Rhenish Massif comprise haematite and quartz with minor siderite, magnetite, and calcite. The deposits are located in the hanging wall of thick volcaniclastic rock sequences and mark the Middle to Late Devonian boundary. Varying ore types with accompanying footwall rocks were sampled from two formerly important ore deposits, the Fortuna mine (Lahn syncline) and the Briloner Eisenberg mine (East Sauerland anticline), in order to elucidate the interplay of processes leading to ore formation. Deposit geology, petrography, and whole-rock geochemistry suggest that the ores formed by iron mobilisation from deeply altered footwall volcaniclastic rocks, subsequent venting of a modified H2O-CO2-Fe-rich and H2S-poor fluid, and precipitation on the seafloor (sedimentary-type), or locally by metasomatic replacement of wall rocks (replacement-type). Petrographic analysis to the sub-micron scale revealed that the sedimentary-type ores most likely formed from a Fe-Si-rich gel and accompanying maturation. Early gel textures include the presence of spherules, aggregates, tubes, and filamentous stalks consisting of nanocrystalline haematite dispersed in a matrix of microcrystalline quartz. Local diagenetic Fe3+ reduction within the gel is indicated by siderite replacement of haematite. Replacement-type ores formed due to a two-step process including coprecipitation of (precursor) haematite and carbonates and subsequent metasomatic replacement by haematite. These ore-forming processes took place during a time when several restricted shallow marine basins in the north-eastern Rheic Ocean were influenced by extensive volcanism and associated hydrothermal fluid flux. Examples of similar volcanic-associated Fe-oxide occurrences of Silurian to Carboniferous age can be categorised as being of Lahn-Dill-type ores as well.

Funder

Technische Hochschule Georg Agricola

Ruhr-Universität Bochum

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics,Economic Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3