Multi-stage metal enrichment and formation of gold mineralization in black shales: the role of high heat flow in a rift setting

Author:

Pašava Jan,Ackerman LukášORCID,Žák Jiří,Svojtka Martin,Magna Tomáš,Pour Ondřej,Trubač Jakub,Veselovský František

Abstract

Abstract Black shales may serve as an important source of metals such as Co, Ni, or As, largely due to anoxic to euxinic conditions in association with high concentrations of sulfur leading to efficient scavenging and transport of metals from seawater into the seafloor sediment. We report on an unusual type of Au mineralization newly discovered in Ediacaran trench-slope black shales in the Bohemian Massif, Czech Republic. The Au enrichment is related to the formation of a quartz–sulfide vein system and a progressive evolution of ore-forming fluids with decreasing temperature, from Sb- to As-rich to final precipitation of native gold from silica and Au-bearing low-temperature hydrothermal colloidal solutions. The hydrothermal nature of these solutions is also documented by Li contents and isotope compositions which differ markedly between barren black shales and those carrying significant late-stage quartz-rich veins. The structural relationships and orientation of the associated quartz veins point to a close connection between vein emplacement and high heat flow in response to Ordovician rifting, and breakup of the northern margin of Gondwana, and opening of the Rheic Ocean. This triggered metal and sulfur remobilization, including Au, from the associated Neoproterozoic–Cambrian volcanosedimentary successions. The documented Au mineralization and its association with the Ordovician rift-related magmatic activity is different from the widespread Variscan Au occurrences in the Bohemian Massif. Our study thus provides a new genetic model potentially important for future exploration of Au also in other terrains underlain by a rifted Cadomian basement.

Funder

Grantová Agentura České Republiky

Czech Geological Survey

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics,Economic Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3