The Black Angel deposit, Greenland: a Paleoproterozoic evaporite-related Mississippi Valley-type Zn–Pb deposit

Author:

Rosa DiogoORCID,Leach David,Guarnieri Pierpaolo,Bekker Andrey

Abstract

AbstractThe Paleoproterozoic Mârmorilik Formation in the Karrat basin of West Greenland hosts the Black Angel Zn–Pb deposit. Chlorine-rich scapolite, zones with vuggy porosity and quartz nodules in the ore-bearing marble are herein interpreted to represent metamorphosed, vanished, and replaced evaporites, respectively. Mineralization is closely associated with anhydrite with δ34S values (5.2–12.6‰) broadly comparable to published values for Paleoproterozoic seawater sulfate. Considering the fundamental attributes of the mineralization and host sequence, a Mississippi Valley-type (MVT) model is the most obvious explanation for mineralization. Overlying the ore-bearing sequence are organic-rich semipelites and massive calcitic marbles, which may have served as seals for hydrocarbon or reduced sulfur and acted as chemical traps for deposition of the sulfidic ore. The Mârmorilik Formation contained an interlayered sulfate-rich evaporite-carbonate sequence, a common setting for MVT deposits in the late Neoproterozoic and Phanerozoic, but unique among the few known MVT deposits in the Paleoproterozoic. This ca. 1915 Ma evaporite-carbonate platform is younger than sulfate evaporites deposited during and immediately after the ca. 2220–2060 Ma Lomagundi carbon isotope excursion and records a significant seawater sulfate level during a time interval when it was assumed that it had been too low to form extensive evaporite deposits. Therefore, MVT and clastic-dominated (CD) Zn–Pb deposits in the geological record might progressively fill the apparent gap in marine sulfate evaporites and provide unique insights into Proterozoic seawater sulfate level. Considering the sequence of tectonic events that affected the Karrat basin, the mineralization took place between Nagssugtoqidian collision (< 1860 Ma) and Rinkian metamorphism (ca. 1830 Ma).

Funder

Nationale Geologiske Undersøgelser for Danmark og Grønland

Ministry of Mineral Resources, Government of Greenland

ACS PF

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics,Economic Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3