Tilapia aquaculture, emerging diseases, and the roles of the skin microbiomes in health and disease

Author:

Debnath Sanjit Chandra,McMurtrie Jamie,Temperton Ben,Delamare-Deboutteville Jérôme,Mohan Chadag Vishnumurthy,Tyler Charles R.

Abstract

AbstractAquaculture is playing an increasingly important role in global food security, especially for low-income and food-deficit countries. The majority of aquaculture production occurs in freshwater earthen ponds and tilapia has quickly become one of the most widely adopted culture species in these systems. Tilapia are now farmed in over 140 countries facilitated by their ease of production, adaptability to a wide range of environmental conditions, fast growth, and high nutritional value. Typically, tilapia have been considered a hardy, disease resilient species; however, the disease is increasing with subsequent threats to the industry as their production is intensified. In this review, we discuss tilapia production, with a focus on Bangladesh as one of the top producing countries, and highlight the problems associated with disease and treatment approaches for them, including the misuse of antimicrobials. We address a key missing component in understanding health and disease processes for sustainable production in aquaculture, specifically the role played by the microbiome. Here we examine the importance of the microbiome in supporting health, focused on the symbiotic microbial community of the fish skin mucosal surface, the abiotic and biotic factors that influence the microbiome, and the shifts that are associated with diseased states. We also identify conserved taxa of skin microbiomes that may be used as indicators of health status for tilapia offering new opportunities to mitigate and manage the disease and optimize environmental growing conditions and farming practices.

Funder

University of Exeter, WorldFish and Cefas

CGIAR Research Program on Fish Agri-Food Systems (FISH) led by WorldFish

BBSRC/South West Biosciences Doctoral Training Partnership; WorldFish and Cefas

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Aquatic Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3