Larval dispersal from an energetic tidal channel and implications for blue mussel (Mytilus edulis) shellfisheries

Author:

Demmer Jonathan,Neill Simon P.,Andres Olga,Malham Shelagh K.,Jones Trevor,Robins Peter

Abstract

AbstractComplex coastal currents control early-stage larval dispersal from intertidal populations, and late-stage settlement patterns, but are often poorly resolved in larval dispersal models. Generally, there is high uncertainty in the timing of larval spawning, which markedly affects larval dispersal. In this study, we describe the physical parameters that induce spawning events in the blue mussel, Mytilus edulis, using a variation of the Condition Index (which relates the mass of meat to the mass of the shell) as a proxy. We developed a high-resolution Eulerian coastal hydrodynamic model, coupled with a Lagrangian particle tracking model, to quantify the potential dispersal of early-stage mussel larvae based on differing spawning dates obtained from field data. Our results showed that (1) the timings of larval spawning cannot be explained solely by ‘thermal shocks’ in the sea or air temperatures (i.e. fluctuations in temperature causing stress); (2) larger spawning events generally occurred during neap tides; (3) the simulated larval dispersal was largely but not always predicted by averaged current pathways (calculated over two weeks period); and (4) simulated self-recruitment was low at sites associated with strong tidal currents. These results have important implications for shellfisheries stock management and sustainability. Specific to this study, simulated mussels from shellfishery beds off North Wales dispersed more than 25 km in one week and so could feasibly contribute to the wider population throughout the northern part of the Irish Sea.

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Aquatic Science

Reference61 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3