Integrated biofloc technology in red tilapia aquaculture: Salinity-dependent effects on water quality, parental stock physiology, reproduction, and immune responses

Author:

Sallam Ghada R.,Shehata Akram Ismael,Basuini Mohammed F. El,Habib Yusuf Jibril,Henish Shimaa,Rahman Afaf N. Abdel,Hassan Youssef M.,Fayed Walied M.,El-Sayed Abdel-Fattah M.,Aly Hadir A.

Abstract

AbstractThe study examines the impact of integrated biofloc technology (BFT), different salinity levels, and their combined effects over 90 days on various physiological parameters. The investigation includes growth performance and feed utilization, water quality, the chemical composition of biofloc and fish, digestive enzymes, reproductive performance, stress and biochemical indicators, and antioxidant-immune responses in red tilapia (Oreochromis spp.) broodstock. The fish were initially weighed (males: n = 270; 104 ± 0.96 g; females: n = 270; 93.2 ± 0.66 g) and subsequently divided into 12 treatment groups (6 for males and 6 for females) spread across 36 separate tanks (3 tanks per treatment; 45 fish per treatment; 15 fish/tank). The treatments involved three salinity levels (18, 28, and 36 ppt) in both clear water (CW) and BFT systems. The outcomes demonstrated that fish in the 36 ppt salinity with BFT treatment demonstrated significant improvements (P < 0.05) in growth parameters (final body weight, weight gain, and specific growth rate, feed intake, and feed conversion ratio). The condition factor in BFT groups increased in all salinity situations. The survival rates of broodstock were consistently high in all experimental conditions The study found that BFT and salinity significantly impacted (P < 0.05) whole body contents (moisture, protein, lipid, and ash) in both males and females. Water quality parameters showed variations between BFT and CW, with notable impacts (P < 0.05) on dissolved oxygen and pH. The BFT and salinity influenced digestive enzyme activities (protease, amylase, and lipase) and reproductive performance (males) and the 36 ppt salinity with BFT recorded the highest values. The hemato-biochemical and antioxidant-immune responses were also impacted by BFT and salinity exposure. The study highlights the potential benefits of incorporating BFT into red tilapia aquaculture systems, particularly in optimizing growth, health, and reproductive performance under various salinity conditions, which can enhance sustainable intensification, disease control, and environmental stewardship.

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3