Sea transfer and net pen cleaning induce changes in stress-related gene expression in commercial Atlantic salmon (Salmo salar) gill tissue

Author:

Hoem Kine SamsetORCID,Tveten Ann-Kristin

Abstract

AbstractStress is a major concern in aquaculture production and more knowledge is needed on physiological responses towards different operational events. Few studies have been performed on fish reared in an actual commercial setting. Transferring salmon from hatchery to sea involves handling, crowding, pumping, transport as well as adjusting to a new environment. This case study investigates the relative expression of selected stress related-genes in farmed Atlantic salmon (Salmo salar) post-smolts that were relocated from land-based breeding tanks with few environmental stressors to sea phase with numerous environmental stressors and major management operations e.g. net pen cleaning. Gill tissue for analysis (n = 60) was harvested at four distinct time points: before, during, and 3 and 6 weeks after sea transfer. RT-qPCR was performed on a panel of 12 genes involved in different cellular pathways (alox5, cyp1α, hif1α, il4/13a, muc2, muc5, muc18, nrf2, pcna, phb, p38 and tnfα). While the transport process itself did not appear to induce notable stress levels, metabolic gene markers showed significant changes in expression after transfer to sea, implying cellular adaptations to sea phase. The occurrence of net pen cleaning induced a strong upregulation of pro-inflammatory markers (alox5, tnfα) and mucins (muc2, muc5 and muc18), suggesting their gene products to be relevant during this operational event. As p38 expression was significantly elevated during transport and after cage cleaning, we cautiously propose p38 as an interesting stress marker for future exploration. The study provides insight into the lives of farmed Atlantic salmon and demonstrates that timing of major operations is crucial to avoid accumulation of stress.

Funder

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3