Antagonistic effects of Bacillus subtilis-derived chitosan nanoparticles on growth performance, stress biomarkers, and histological alterations of cadmium-intoxicated Nile tilapia fingerlings

Author:

Abdel-Tawwab Mohsen,Eldessouki Elsayed A.,Abd-Ellatieff Hoda A.,Khalil Riad H.,El-Sabbagh Nasser M.,Saleh Hamida M.,Saleh Nehad A.,Abdelhakim Taghrid M. N.,Samak Dalia H.

Abstract

AbstractHeavy metals including cadmium (Cd) are one of the major persistent and non-biodegradable wastewater pollutants. However, Cd reaches the aquatic ecosystem via industrial and agricultural waste discharges and causes serious deterioration in the welfare status of aquatic animals. The use of feed supplements with immune-stimulants to mitigate the toxic influences of heavy metals including Cd is a much more intriguing point. Thus, the current experiment used the bio-synthetized chitosan nanoparticles derived from Bacillus subtilis (Bs-CNPs) as a feed supplement and evaluated its ameliorative impacts on the growth and welfare status of Cd-intoxicated Nile tilapia (Oreochromis niloticus). Bifactorial design (3 Bs-CNPs levels × 3 Cd levels) was used in the current study where Nile tilapia fingerlings (58–63 g) were fed on 0.0, 2, and 4 g Bs-CNPs/kg feed alongside with exposing to 0.0, 0.392, and 0.784 mg Cd/L for 60 days to represent nine treatments as follows: T1: control group (no Cd exposure; no Bs-CNPs supplement); T2 and T3: fish were intoxicated with 0.784 and 0.392 mg Cd/L, respectively; T4 and T5: fish fed on 2 and 4 g Bs-CNPs/kg feed, respectively; T6 and T7: fish were fed on 2 g Bs-CNPs/kg feed along with exposure to 0.784 and 0.392 mg Cd/L, respectively; and T8 and T9: fish were fed on 4 g Bs-CNPs/kg feed along with exposure to 0.784 and 0.392 mg Cd/L, respectively. It is noted that the Cd-intoxicated fish exhibited significant retardation in growth performance and digestive enzyme activities with a decline in their survival rate compared to the control group (T1). The results also revealed that exposing fish to Cd toxicity alone with no feed supplement (T2 and T3) experienced abnormal clinical signs and behavioral changes. Compared with the control group (no Cd with no Bs-CNPs), highest values of cortisol, glucose, aspartate and alanine aminotransferase, and acetylcholine esterase activity were found in fish fed on the control diet along with exposure to 0.784 mg Cd/L. Higher Cd restudies in liver, intestine, gills, kidney, and muscles tissues were detected in fish exposed to 0.784 mg Cd/L alone and the sequence order of Cd levels in different fish organs is intestine > gills > liver > kidney > muscles. Remarkable pathological alterations in hepatic and intestinal tissues were also observed. On the other hand, feeding Nile tilapia on Bs-CNPs-enriched diets alone with no Cd exposure enhanced their growth performance, digestive enzyme activities, and hematological parameters with no Cd residues in fish organs. Interestingly, feeding the Cd-intoxicated fish on diets with Bs-CNPs (4 g/kg feed) returned their growth, digestive enzymes, hematological, and biochemical parameters to approximate those of the control group. Furthermore, these treatments showed histopathological alteration recovery in the intestine and liver tissues is similar to those in the control group (no Cd with no Bs-CNPs). Fish fed on Bs-CNPs levels with no Cd exposure showed no Cd residues in different fish organs. The Cd levels in different organs of fish exposed to 0.392 mg Cd/L along with feeding on Bs-CNPs (4 g/kg feed) were lower than those in Cd-exposed fish treatments. Consequently, the current study evoked that feeding Nile tilapia fingerlings on Bs-CNPs (4 g/kg feed) could enhance their growth performance and protect the fish from the Cd toxicity that may occur in the aquatic ecosystem.

Funder

Agricultural Research Center

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3