A simple and reliable method for creating PCR-detectable mutants in Arabidopsis with the polycistronic tRNA–gRNA CRISPR/Cas9 system

Author:

Hui Liangliang,Zhao Min,He Junqi,Hu Yingying,Huo Yanshuang,Hao Houyan,Hao Yaqi,Zhu Weining,Wang Yuhua,Xu Min,Fu Aigen

Abstract

Abstract To develop an easy and robust method for creating genetically stable and easily detectable Arabidopsis mutants, we adopted the polycistronic tRNA–gRNA CRISPR/Cas9 (PTG/Cas9) system, a multiplex gene-editing tool in rice, with PTOX as the reporter gene. The PTG/Cas9 system has a great potential in generating large deletions detectable by PCR, which greatly simplifies the laborious work of mutant screening. We constructed a PTOX–PTG/Cas9 system with five gRNAs and introduced it into Arabidopsis. At T1 generation, 24.4% of transgenic plants were chimeric with PCR-detectable deletions in PTOX locus, but no homozygous mutant was found, indicating that gene editing occurred predominantly in somatic cells. After a self-cross propagation, 60% of T1 chimeric plants were able to produce homozygous, heterozygous, or bi-allelic ptox offsprings. Inheritable homozygous ptox mutants without Cas9 gene can be obtained earliest at T2 generation. We further targeted five other genes using the same procedure and achieved homozygous Cas9-free mutants with large deletions for all genes within three generations. We established a standard and reliable protocol to generate stable inherited deletion mutants in 2–3 generations along with simple PCR screening methods. We conclude that the rice PTG/Cas9 system is an efficient, easy, and rapid tool to edit genes in Arabidopsis. We propose that it could be applied to other genes in Arabidopsis, and it might have the potential to edit genes in other plant species as well.

Funder

National Natural Science Foundation of China

Education Department of Shaanxi Province

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Agronomy and Crop Science,Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3