Recursive quality optimization of a smart forming tool under the use of perception based hybrid datasets for training of a Deep Neural Network

Author:

Feldmann S.,Schmiedt M.,Schlosser J. M.,Rimkus W.,Stempfle T.,Rathmann C.

Abstract

AbstractIn industrial metal forming processes, the generation of datasets for inline and optical quality assessment is expensive and time-consuming. Within the research project SimKI, conventional metal forming plants were digitalized under the use of perception-based 3D-sensors in combination with a completely redesigned forming tool. The integration of optical quality observation methods connected with a retrofitting approach of the press tool provides the opportunity to generate an information-feedback loop that predicts part defects before their occurrence. Additionally, the SimKI-method combines conventional statistical measurement methods with AI-based defect detection algorithms that are trained by generic datasets of a finite-element simulation, real component images of a 3D imaging device, and a combination of both. The generated datasets are used to accelerate the training of a DNN-based algorithm to identify the position and deviation from the agreed quality. The high degree of innovation is based on obtaining real-time component quality information under the use of AI-based optical quality assessment, which in turn provides information to the control algorithm of the smart forming tool.

Funder

Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg

Hochschule Aalen - Technik und Wirtschaft

Publisher

Springer Science and Business Media LLC

Reference22 articles.

1. eurostat: Manufacturing statistics - NACE Rev. 2. Data extracted in March 2020. 2021. https://ec.europa.eu/eurostat/statistics-explained. Accessed 24 June 2021.

2. Federal Ministry for Economic Affairs and Energy (BMWi): 2030 Vision for Industrie 4.0. Shaping Digital Ecosystems Globally (2019).

3. ten Hompel M, Vogel-Heuser B, Bauernhansl T. Handbuch Industrie 4.0 [Handbook Industry 4.0]. Berlin: Springer; 2020.

4. Wagner RM. Industrie 4.0 für die Praxis [Industy 4.0 in practice]. Wiesbaden: Springer Fachmedien Wiesbaden; 2018.

5. Al-Maeeni SSH, Kuhnhen C, Engel B, Schiller M. Smart retrofitting of machine tools in the context of industry 4.0. Proced CIRP. 2020. https://doi.org/10.1016/j.procir.2020.05.064.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3