Classification of drugs based on mechanism of action using machine learning techniques

Author:

Gururaj H. L.,Flammini Francesco,Kumari H. A. Chaya,Puneeth G. R.,Kumar B. R. Sunil

Abstract

AbstractThe mechanism of action is an important aspect of drug development. It can help scientists in the process of drug discovery. This paper provides a machine learning model to predict the mechanism of action of a drug. The machine learning models used in this paper are Binary Relevance K Nearest Neighbors (Type A and Type B), Multi-label K-Nearest Neighbors and a custom neural network. These machine learning models are evaluated using the mean column-wise log loss. The custom neural network model had the best accuracy with a log loss of 0.01706. This neural network model is integrated into a web application using Flask framework. A user can upload a custom testing features dataset, which contains the gene expression and the cell viability levels. The web application will output the top classes of drugs, along with the scatter plots for each of the drug.

Publisher

Springer Science and Business Media LLC

Reference23 articles.

1. Definition of mechanism of action, National Cancer Institute, https://www.cancer.gov/publications/dictionaries/cancer-terms/def/mechanism-of-action.

2. Pierre-Louis T. Mechanism of drug action and pharmacokinetics/pharmacodynamics integration in dosage regimen optimization for veterinary medicine. Veterinary Pharmacology and Therapeutics. Wiley. p 1525, 2018, 9781118855829. hal-02787306.

3. Palmer A. The many genes of drug mechanism. Nat Chem Biol. 2016;12:57–8. https://doi.org/10.1038/nchembio.2010.

4. Yuan T, et al. The pursuit of mechanism of action: uncovering drug complexity in TB drug discovery. RSC chemical biology. 2021;2(2):423–40. https://doi.org/10.1039/d0cb00226g.

5. Trapotsi M-A, Barrett I, Engkvist O, Bender A. Bioinformatic approaches in the understanding of mechanism of action (MoA). In: Plowright AT, editor. Target discovery and validation. https://doi.org/10.1002/9783527818242.ch11.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3