Cognitive pairwise comparison forward feature selection with deep learning for astronomical object classification with sloan digital sky survey

Author:

Yuen Kevin Kam FungORCID

Abstract

AbstractThis paper proposes a hybrid approach integrating the expert knowledge judgment approach using the Cognitive Pairwise Comparison (CPC) to the Deep Learning, a modern classification approach, for astronomic object classification. The astronomic data with ten thousand samples retrieved from Sloan Digital Sky Survey Sky Server Data Release 15 (SDSS SkyServer DR 15) are used for this study. The CPC is an approach to elicit and encode expert knowledge in the format of a Pairwise Opposite Matrix (POM) to evaluate expert preferences for the features. A forward feature selection algorithm taking the expert choices using CPC for the ordered features is used for the feature selection for the deep learning algorithm to build a heuristic training model based on the astronomic data. Whilst the accuracy of the case of improper feature selection is just 37.1%, the proposed hybrid approach can obtain a very high accuracy of 97.9% for the classification of the astronomic object using the eight scaled features (u, g, r, i, z redshift, ra, dec). To extend this research, the proposed CPC can be used as a human-centered tool to be applied to other areas of data sciences.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3