Continuous detection of concept drift in industrial cyber-physical systems using closed loop incremental machine learning

Author:

Jayaratne Dinithi,De Silva Daswin,Alahakoon Damminda,Yu Xinghuo

Abstract

AbstractThe embedded, computational and cloud elements of industrial cyber physical systems (CPS) generate large volumes of data at high velocity to support the operations and functions of corresponding time-critical and mission-critical physical entities. Given the non-deterministic nature of these entities, the generated data streams are susceptible to dynamic and abrupt changes. Such changes, which are formally defined as concept drifts, leads to a decline in the accuracy and robustness of predicted CPS behaviors. Most existing work in concept drift detection are classifier dependent and require labeled data. However, CPS data streams are unlabeled, unstructured and change over time. In this paper, we propose an unsupervised machine learning algorithm for continuous concept drift detection in industrial CPS. This algorithm demonstrates three types of unsupervised learning, online, incremental and decremental. Furthermore, it distinguishes between abrupt and reoccurring drifts. We conducted experiments on SEA, a widely cited synthetic dataset of concept drift detection, and two industrial applications of CPS, task tracking in factory settings and smart energy consumption. The results of these experiments successfully validate the key features of the proposed algorithm and its utility of detecting change in non-deterministic CPS environments.

Publisher

Springer Science and Business Media LLC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3