An efficient beaconing of bluetooth low energy by decision making algorithm

Author:

Fujisawa Minoru,Yasuda Hiroyuki,Isogai Ryosuke,Arai Maki,Yoshida Yoshifumi,Li Aohan,Kim Song-Ju,Hasegawa Mikio

Abstract

AbstractOngoing research endeavors are exploring the potential of artificial intelligence to enhance the efficiency of wireless communication systems. Nevertheless, complex computational mechanisms, such as those inherent in neural networks, are not optimally suited for applications where the reduction of computational intricacy is of paramount importance. The rise in Bluetooth-enabled devices has led to the widespread adoption of Bluetooth Low Energy (BLE) in various IoT applications, primarily due to its low power consumption. For specific applications, such as lost and found tags which operate on small batteries, it’s especially important to further reduce power usage. With the objective of achieving low power consumption by optimally selecting channels and advertisement intervals, this paper introduces a parameter selection method derived from the Multi-Armed Bandit (MAB) algorithm, a technique known for addressing human decision-making challenges. In this study, we evaluate our proposed method using simulations in diverse environments. The outcomes indicate that, without compromising much on reliability, our approach can reduce power consumption by up to 40% based on the wireless surroundings. Additionally, when this method was implemented on an actual BLE device, it demonstrated effectiveness in reducing power consumption by about 35% in real environments.

Funder

JST Moonshot R &D Grant

AMED under Grant

JSPS KAKENHI

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3