Simple rules outperform machine learning for personnel selection: insights from the 3rd annual SIOP machine learning competition

Author:

Harman Jason L.,Scheuerman Jaelle

Abstract

AbstractMachine learning (ML) algorithms are often assumed to be the most accurate way of producing predictive models despite problems with explainability and adverse impact. The 3rd annual Society for Industrial and Organizational Psychology Machine Learning Competition sought to find ML models for personnel selection that could balance the best of ML prediction with the constraint of minimizing selection bias based on race and gender. To test the possible advantages of simple rules over ML algorithms, we entered a simple and explainable rule-based model inspired by recent advances in model comparison. This simple model outperformed most ML models entered and was comparable to the top performers while retaining positive qualities such as explainability and transparency.

Funder

Louisiana Board of Regents

Publisher

Springer Science and Business Media LLC

Reference12 articles.

1. Shadbolt N. A matter of trust. IEEE Intell Syst. 2002;17:2–3.

2. Angwin J, Larson J, Mattu S, Kirchner L. Machine bias. ProPublica. 2016. https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing.

3. Benjamin R. Assessing risk, automating racism. Science. 2019;366(6464):421–2.

4. Kirchner L, Goldstein M. How automated background checks freeze out renters. The New York Times. 2020. https://www.nytimes.com/2020/05/28/business/renters-background-checks.html. Accessed 15 Aug 2022.

5. Martignon L, Katsikopoulos KV, Woike JK. Categorization with limited resources: a family of simple heuristics. J Math Psychol. 2008;52:352–61.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Can a computer outfake a human?;Personality and Individual Differences;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3