From emissions to resources: mitigating the critical raw material supply chain vulnerability of renewable energy technologies

Author:

Mertens JanORCID,Dewulf Jo,Breyer Christian,Belmans Ronnie,Gendron Corinne,Geoffron Patrice,Goossens Luc,Fischer Carolyn,Du Fornel Elodie,Hayhoe Katharine,Hirose Katsu,Le Cadre-Loret Elodie,Lester Richard,Maigné Fanny,Maitournam Habibou,de Miranda Paulo Emilio Valadão,Verwee Peter,Sala Olivier,Webber Michael,Debackere Koenraad

Abstract

AbstractThe massive deployment of clean energy technologies plays a vital role in the strategy to attain carbon neutrality by 2050 and allow subsequent negative CO2 emissions in order to achieve our climate goals. An emerging challenge, known as ‘From Emissions to Resources,’ highlights the significant increase in demand for critical raw materials (CRMs) in clean energy technologies. Despite the presence of ample geological reserves, ensuring sustainable access to these materials is crucial for the successful transition to clean energy, taking into account the environmental and social impacts. The commentary centers on four renewable energy technologies namely solar photovoltaics, wind turbines, Li-ion batteries, and water electrolysers. Four pathways for mitigation are quantitatively examined to assess their potential in reducing the vulnerability of the CRM supply chain for these four clean energy technologies: (i) Enhancing material efficiency, (ii) employing substitutivity strategies, (iii) exploring recycling prospects, and (iv) promoting relocalisation initiatives. It is important to note that no single mitigation lever can completely eliminate the risk of CRM supply, rather the accelerated adoption of all four levers is necessary to minimize the CRM supply risk to its absolute minimum. Hence, the study underscores the significance of increased research, innovation, and regulatory initiatives, along with raising social awareness, in effectively addressing the challenges faced by the CRM supply chain and contributing to a sustainable energy transition.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3