Assessing the feasibility of deep-seabed mining of polymetallic nodules in the Area of seabed and ocean floor beyond the limits of national jurisdiction, as a method of alleviating supply-side issues for cobalt to US markets

Author:

Cunningham AlexanderORCID

Abstract

AbstractThe growing importance of cobalt to the US economy has led to its categorisation as a critical mineral. Cobalt demand is increasing due to its requirement in lithium-ion batteries, which will significantly contribute to the energy transition. Supply is threatened for various reasons, primarily regarding supply chain concentrations, with the majority of the world’s cobalt originating in terrestrial deposits in the Democratic Republic of the Congo, and being refined in China. There remain environmental and ethical concerns over the present supply chain. Previous discussions around reducing cobalt’s criticality have suggested diversifying processing locations to reduce geographical and jurisdictional reliance where possible. This study assesses the viability of extracting cobalt from polymetallic nodules (PMNs) located on the deep-seabed in the Area, as an alternative strategy to reduce cobalt’s criticality. Assessments are made of the viability of PMN extraction considering ongoing barriers to introduction, contrasted with current arguments supporting PMN extraction. PMN mining offers a more stable and decentralised alternative to current cobalt supply. There exist impediments to its introduction, notably potential environmental impacts, which remain poorly understood. Technical and political restrictions must also be overcome. It is argued that the wider environmental benefits of increased cobalt supply from PMN mining may offset its detrimental environmental impacts. It is suggested that PMN mining be used in a wider strategy to improve supply security of cobalt to US markets.

Publisher

Springer Science and Business Media LLC

Subject

Social Sciences (miscellaneous),Economics, Econometrics and Finance (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3