Implications of new hyperspectral satellites for raw materials exploration

Author:

Schodlok Martin C.ORCID,Frei MichaelaORCID,Segl KarlORCID

Abstract

Abstract Hyperspectral remote sensing already is important in geoscientific research in the fields of geology, soil, exploration and mining. New hyperspectral satellite systems are already in operation (e.g. PRISMA and DESIS; Caporusso et al. 2020; Alonso et al. (Sensors 19(20):4471–4515, 2019)) and more systems are planned e.g. the European Copernicus Next Generation Hyperspectral Satellite CHIME (Nieke and Rast 2018). The German system EnMAP was successfully launched into space on 1st of April 2022 (DLR 2022). The potential of hyperspectral airborne and satellite borne data for mining-related applications is discussed. Investigated are the information contents of hyperspectral data for exploration target recognition and their dependency on spatial resolutions of different sensor platforms. Airborne data offer high spatial resolution of 2.5 m with limited areal data acquisition, whereas hyperspectral spaceborne sensors guaranty nearly worldwide data availability with the same spectral characteristics but medium spatial resolution (30 m). The aspects of high spectral resolution and high versus medium spatial resolution targeted mineral mapping is investigated. The methodological concept includes processing aspects, standardized data availability for mineral mapping and mineralization targeting for operational application, to maintain/allow application of hyperspectral data even for non-remote sensing experts. Based on hyperspectral airborne data acquired in the Aggeneys region in South Africa, spaceborne hyperspectral data are simulated following the EnMAP specifications, and the concept for targeted mapping of surface alterations of a lead zinc deposit is discussed.

Funder

Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)

Publisher

Springer Science and Business Media LLC

Subject

Social Sciences (miscellaneous),Economics, Econometrics and Finance (miscellaneous)

Reference26 articles.

1. Alonso K, Bachmann M, Burch K, Carmona E, Cerra D, de los Reyes R et al (2019) Data products, quality and validation of the DLR earth sensing imaging spectrometer (DESIS). Sensors 19(20):4471–4515. https://doi.org/10.3390/s19204471 (Multidisciplinary Digital Publishing Institute (MDPI))

2. Caporusso G, Lopinto E, Lorusso R, Loizzo R, Guarini R, Daraio MG et al (2020) The hyperspectral PRISMA mission in operations. IEEE IGARSS 2020 Proceedings. 3282–3285

3. Cornell DH, Pettersson A, Whitehouse MJ, Schersten A (2009) A new chronostratigraphic paradigm for the age and tectonic history of the Mesoproterozoic Bushmanland ore district, South Africa; reply. Econ Geol Bull Soc Econ Geol 104(8):1282–1285. https://doi.org/10.2113/gsecongeo.104.8.1282

4. Cudahy TJ (1997) PIMA-II Spectral Characteristics of Natural Kaolins. CSIRO Exploration and Mining Report 420R. Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra

5. DLR (2022) German satellite EnMAP launches successfully. DLR News - 01.04.2022. https://www.dlr.de/content/en/articles/news/2022/02/20220401_german-satellite-enmap-launches-successfully.html. Accessed 18 April 2022

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comparative Analysis of Siamese Networks and Spectral Angle Mapper for Mineral Detection using Hyperspectral Imagery;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

2. Application Model of Hyperspectral Technology Based on Novel Spectral Indices for Salinity Assessment in Soil Heritage Sites;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2024-06-25

3. A Novel Hyperspectral Salt Assessment Model for Weathering in Architectural Ruins;ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2024-06-10

4. Eliminating the interference of water for direct sensing of submerged plastics using hyperspectral near-infrared imager;Scientific Reports;2023-10-06

5. Weighted Group Sparse Regularized Tensor Decomposition for Hyperspectral Image Denoising;Applied Sciences;2023-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3