Abstract
AbstractWe present an error bound for a least squares version of the kernel based meshless finite difference method for elliptic differential equations on smooth compact manifolds of arbitrary dimension without boundary. In particular, we obtain sufficient conditions for the convergence of this method. Numerical examples are provided for the equation$$-\Delta _{\mathcal {M}} u + u = f$$-ΔMu+u=fon the 2- and 3-spheres, where$$\Delta _{\mathcal {M}} $$ΔMis the Laplace-Beltrami operator.
Funder
Justus-Liebig-Universität Gießen
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Reference70 articles.
1. Adams, R., Fournier, J.: Sobolev Spaces, 2nd edn. Academic Press, Amsterdam (2003)
2. Agranovich, M.S.: Elliptic operators on closed manifolds. In: Egorov, Y.V., Shubin, M.A. (eds.) Partial Differential Equations VI: Elliptic and Parabolic Operators, pp. 1–130. Heidelberg, Springer, Berlin Heidelberg, Berlin (1994)
3. Agranovich, M.S.: Sobolev spaces, their generalizations and elliptic problems in smooth and Lipschitz domains. Springer, (2015)
4. Aronszajn, N.: Theory of reproducing kernels. Transactions of the American Mathematical Society 68(3), 337–404 (1950)
5. Babuška, I., Melenk, J.M.: The partition of unity method. International journal for numerical methods in engineering 40(4), 727–758 (1997)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献