A Grassmann manifold handbook: basic geometry and computational aspects

Author:

Bendokat ThomasORCID,Zimmermann RalfORCID,Absil P.-A.

Abstract

AbstractThe Grassmann manifold of linear subspaces is important for the mathematical modelling of a multitude of applications, ranging from problems in machine learning, computer vision and image processing to low-rank matrix optimization problems, dynamic low-rank decompositions and model reduction. With this mostly expository work, we aim to provide a collection of the essential facts and formulae on the geometry of the Grassmann manifold in a fashion that is fit for tackling the aforementioned problems with matrix-based algorithms. Moreover, we expose the Grassmann geometry both from the approach of representing subspaces with orthogonal projectors and when viewed as a quotient space of the orthogonal group, where subspaces are identified as equivalence classes of (orthogonal) bases. This bridges the associated research tracks and allows for an easy transition between these two approaches. Original contributions include a modified algorithm for computing the Riemannian logarithm map on the Grassmannian that is advantageous numerically but also allows for a more elementary, yet more complete description of the cut locus and the conjugate points. We also derive a formula for parallel transport along geodesics in the orthogonal projector perspective, formulae for the derivative of the exponential map, as well as a formula for Jacobi fields vanishing at one point.

Funder

fonds de la recherche scientifique - fnrs and fonds wetenschappelijk onderzoek - vlaanderen

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Riemannian Polarization of Multi-Agent Gradient Flows;2023 62nd IEEE Conference on Decision and Control (CDC);2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3