Abstract
AbstractSimulating the flow of water in district heating networks requires numerical methods which are independent of the CFL condition. We develop a high order scheme for networks of advection equations allowing large time steps. With the MOOD technique, unphysical oscillations of nonsmooth solutions are avoided. In numerical tests, the applicability to real networks is shown.
Funder
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Reference25 articles.
1. Arbogast, T., Huang, CS, Zhao, X: Von neumann stable, implicit, high order, finite volume weno schemes (2019)
2. Borsche, R, Eimer, M, Siedow, N: A local time stepping method for thermal energy transport in district heating networks. Appl Math Comput 353(C), 215–229 (2019). https://doi.org/10.1016/j.amc.2019.01.072. https://ideas.repec.org/a/eee/apmaco/v353y2019icp215-229.html
3. Boscarino, S., Russo, G., Scandurra, L.: All mach number second order semi-implicit scheme for the euler equations of gas dynamics. J. Sci. Comput. 77(2), 850–884 (2018). https://doi.org/10.1007/s10915-018-0731-9
4. Cabrera E, Garcia-Serra, J, Iglesias, PL: Modelling water distribution networks: from steady flow to water hammer, pp 3–32. Springer, Dordrecht (1995)
5. Clain, S, Diot, S, Loubère, R: A high-order finite volume method for hyperbolic systems: multi-dimensional Optimal Order Detection (MOOD). Journal of Computational Physics, pp 0–0. https://doi.org/10.1016/j.jcp.2011.02.026, https://hal.archives-ouvertes.fr/hal-00518478 (2011)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献