Runge–Kutta projection methods with low dispersion and dissipation errors
Author:
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Link
http://link.springer.com/content/pdf/10.1007/s10444-014-9355-2.pdf
Reference25 articles.
1. Bogacki, P., Shampine, L.F.: A 3(2) pair of runge-kutta formulas. Appl. Math. Lett. 2(4), 321–325 (1989)
2. Brugnano, L., Calvo, M., Montijano, J.I., Rández, L.: Energy-preserving methods for poisson systems. J. Comput. Appl. Math. 236(16), 3890–3904 (2012)
3. Brugnano, L., Iavernaro, F.: Line integral methods which preserve all invariants of conservative problems. J. Comput. Appl. Math. 236(16), 3905–3919 (2012)
4. Brugnano, L., Iavernaro, F., Trigiante, D.: Hamiltonian BVMs (HBVMs): a family of “drift-free” methods for integrating polynomial hamiltonian systems. AIP Conf. Proc. 1168, 715–718 (2009)
5. Brugnano, L., Iavernaro, F., Trigiante, D.: A simple framework for the derivation and analysis of effective classes of one-step methods for ODEs. Appl. Math. Comput. 218(17), 8475–8485 (2012)
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A generalized energy and QUadratic Invariant Preserving (GEQUIP) method for Hamiltonian systems with multiple invariants;Journal of Computational and Applied Mathematics;2024-12
2. Derivation And Implementation of a Fifth Stage Fourth Order Explicit Runge-Kutta Formula using (,) Functional Derivatives;Indian Journal of Advanced Mathematics;2023-12-30
3. Consistency and Convergence Analysis of an (,) Functionally Derived Explicit Fifth-Stage Fourth-Order Runge-Kutta Method;International Journal of Basic Sciences and Applied Computing;2022-12-30
4. Energy-preserving exponential integrators of arbitrarily high order for conservative or dissipative systems with highly oscillatory solutions;Journal of Computational Physics;2021-10
5. Explicit high-order energy-preserving methods for general Hamiltonian partial differential equations;Journal of Computational and Applied Mathematics;2021-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3