Approximation in the extended functional tensor train format

Author:

Strössner Christoph,Sun Bonan,Kressner DanielORCID

Abstract

AbstractThis work proposes the extended functional tensor train (EFTT) format for compressing and working with multivariate functions on tensor product domains. Our compression algorithm combines tensorized Chebyshev interpolation with a low-rank approximation algorithm that is entirely based on function evaluations. Compared to existing methods based on the functional tensor train format, the adaptivity of our approach often results in reducing the required storage, sometimes considerably, while achieving the same accuracy. In particular, we reduce the number of function evaluations required to achieve a prescribed accuracy by up to over $$96\%$$ 96 % compared to the algorithm from Gorodetsky et al. (Comput. Methods Appl. Mech. Eng. 347, 59–84 2019).

Funder

EPFL Lausanne

Publisher

Springer Science and Business Media LLC

Reference99 articles.

1. Ali, M., Nouy, A.: Approximation with tensor networks. Part I: Approximation spaces. arXiv:2007.00118 (2020)

2. Ali, M., Nouy, A.: Approximation with tensor networks. Part II: Approximation rates for smoothness classes. arXiv:2007.00128 (2020)

3. Ali, M., Nouy, A.: Approximation with tensor networks. Part III: Multivariate approximation. arXiv:2101.11932 (2021)

4. An, J., Owen, A.: Quasi-regression. J. Complexity 17, 588–607 (2001)

5. Aurentz, J.L., Trefethen, L.N.: Chopping a Chebyshev series. ACM Trans. Math. Software 43, 1–21 (2017)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3