Abstract
AbstractThe total positivity of collocation, Wronskian and Gram matrices corresponding to bases of the form (eλt,teλt,…,tneλt) is analyzed. A bidiagonal decomposition providing the accurate numerical resolution of algebraic linear problems with these matrices is derived. The numerical experimentation confirms the accuracy of the proposed methods.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Reference29 articles.
1. Alonso, P., Delgado, J., Gallego, R., Peña, J. M.: Conditioning and accurate computations with Pascal matrices. J. Comput. Appl. Math. 252, 21–26 (2013)
2. Ando, T.: Totally positive matrices. Linear Algebra Appl. 90, 165–219 (1987)
3. Delgado, J., Peña, J.M.: Accurate computations with collocation matrices of rational bases. Appl. Math. Comput. 219, 4354–4364 (2013)
4. Delgado, J., Peña, J. M.: Fast and accurate algorithms for Jacobi-Stirling matrices. Appl. Math. Comput. 236, 253–259 (2014)
5. Delgado, J., Orera, H., Peña, J. M.: Accurate computations with Laguerre matrices. Numer Linear Algebra Appl. 26, e2217 (2019). 10 pp.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献