When is there a representer theorem?

Author:

Schlegel KevinORCID

Abstract

AbstractWe consider a general regularised interpolation problem for learning a parameter vector from data. The well-known representer theorem says that under certain conditions on the regulariser there exists a solution in the linear span of the data points. This is at the core of kernel methods in machine learning as it makes the problem computationally tractable. Most literature deals only with sufficient conditions for representer theorems in Hilbert spaces and shows that the regulariser being norm-based is sufficient for the existence of a representer theorem. We prove necessary and sufficient conditions for the existence of representer theorems in reflexive Banach spaces and show that any regulariser has to be essentially norm-based for a representer theorem to exist. Moreover, we illustrate why in a sense reflexivity is the minimal requirement on the function space. We further show that if the learning relies on the linear representer theorem, then the solution is independent of the regulariser and in fact determined by the function space alone. This in particular shows the value of generalising Hilbert space learning theory to Banach spaces.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics

Reference22 articles.

1. Argyriou, A., Micchelli, C.A., Pontil, M.: When is there a representer theorem? vector versus matrix regularizers. J. Mach. Learn. Res. 10, 2507–2529 (2009)

2. Asplund, E.: Positivity of duality mappings. Bull. Amer. Math. Soc. 73(2), 200–203 (1967)

3. Blaz̆ek, J.: Some remarks on the duality mapping. Acta Univ. Carolinae Math. Phys. 23(2), 15–19 (1982)

4. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York. https://doi.org/10.1007/978-0-387-70914-7 (2011)

5. Browder, F.E.: Multi-valued monotone nonlinear mappings and duality mappings in banach spaces. Trans. Am. Math. Soc. 118, 338–351 (1965)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sparse machine learning in Banach spaces;Applied Numerical Mathematics;2023-05

2. Interpolation Kernel Machine and Indefinite Kernel Methods for Graph Classification;Pattern Recognition and Artificial Intelligence;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3