Abstract
AbstractWe study numerical conformal mappings of planar Jordan domains with boundaries consisting of finitely many circular arcs, also called polycircular domains, and compute the moduli of quadrilaterals for these domains. Experimental error estimates are provided and, when possible, comparison to exact values or other methods are given. We also analyze the rate of convergence as a function of the number of degrees of freedom. The main ingredients of the computation are boundary integral equations combined with the fast multipole method.
Funder
Turun Yliopisto
Natural Science Foundation of Zhejiang Province
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
University of Turku (UTU) including Turku University Central Hospital
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Reference46 articles.
1. Ablowitz, M.J., Fokas, A.S.: Complex Variables: Introduction and Applications. Cambridge Texts in Applied Mathematics, 2nd edn., p. xii+647. Cambridge University Press, Cambridge (2003)
2. Ahlfors, L.V.: Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg (1973)
3. Anselmo, T., da Cunha, B., Nelson, R., Crowdy, D.G.: Schwarz-Christoffel accessory parameter for quadrilaterals via isomonodromy. J. Phys. A: Math. Theor. 53, 355201 (2020)
4. Bauer, U., Lauf, W.: Conformal mapping onto a doubly connected circular arc polygonal domain. Comput. Methods Funct. Theory 19(1), 77–96 (2019)
5. Bjørstad, P., Grosse, E.: Conformal mapping of circular arc polygons. SIAM J. Sci. Stat. Comput. 8, 19–32 (1987)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献