Abstract
AbstractNumerical methods for the optimal feedback control of high-dimensional dynamical systems typically suffer from the curse of dimensionality. In the current presentation, we devise a mesh-free data-based approximation method for the value function of optimal control problems, which partially mitigates the dimensionality problem. The method is based on a greedy Hermite kernel interpolation scheme and incorporates context knowledge by its structure. Especially, the value function surrogate is elegantly enforced to be 0 in the target state, non-negative and constructed as a correction of a linearized model. The algorithm allows formulation in a matrix-free way which ensures efficient offline and online evaluation of the surrogate, circumventing the large-matrix problem for multivariate Hermite interpolation. Additionally, an incremental Cholesky factorization is utilized in the offline generation of the surrogate. For finite time horizons, both convergence of the surrogate to the value function and for the surrogate vs. the optimal controlled dynamical system are proven. Experiments support the effectiveness of the scheme, using among others a new academic model with an explicitly given value function. It may also be useful for the community to validate other optimal control approaches.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC