Publisher
Springer Science and Business Media LLC
Reference13 articles.
1. R. F. Friedberg, “Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication,” J. Symb. Log., 23, No. 3, 309-316 (1958).
2. S. S. Goncharov, S. Lempp, and D. R. Solomon, “Friedberg numberings of families of n-computably enumerable sets,” Algebra and Logic, 41, No. 2, 81-86 (2002).
3. Yu. L. Ershov, “On a hierarchy of sets III,” Algebra and Logic, 9, No. 1, 20-31 (1970).
4. C. J. Ash and J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Stud. Logic Found. Math., 144, Elsevier, Amsterdam (2000).
5. S. S. Goncharov and A. Sorbi, “Generalized computable numerations and nontrivial Rogers semilattices,” Algebra and Logic, 36, No. 6, 359-369 (1997).
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. ON THE EXISTENCE OF UNIVERSAL NUMBERINGS;Herald of the Kazakh-British technical university;2023-04-01
2. Rogers semilattices of punctual numberings;Mathematical Structures in Computer Science;2022-02
3. CEA Operators and the Ershov Hierarchy;Russian Mathematics;2021-08
4. On Universal Pairs in the Ershov Hierarchy;Siberian Mathematical Journal;2021-01
5. Classifying equivalence relations in the Ershov hierarchy;Archive for Mathematical Logic;2020-02-13