1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous distributed systems (2016).
arXiv:1603.04467
2. Caruana, R., Lawrence, S., Giles, C.L.: Overfitting in neural nets: backpropagation, conjugate gradient, and early stopping. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems, 13, pp. 402–408. MIT Press (2001)
3. Celma, O.: Music Recommendation and Discovery in the Long Tail. Springer, Berlin (2010)
4. Chan, N.N., Gaaloul, W., Tata, S.: A recommender system based on historical usage data for web service discovery. Serv. Oriented Comput. Appl. 6(1), 51–63 (2012)
5. Chen, S., Moore, J.L., Turnbull, D., Joachims, T.: Playlist prediction via metric embedding. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, ACM, pp. 714–722 (2012)