Learning similarity measures from data

Author:

Mathisen Bjørn MagnusORCID,Aamodt AgnarORCID,Bach KerstinORCID,Langseth HelgeORCID

Abstract

Abstract Defining similarity measures is a requirement for some machine learning methods. One such method is case-based reasoning (CBR) where the similarity measure is used to retrieve the stored case or a set of cases most similar to the query case. Describing a similarity measure analytically is challenging, even for domain experts working with CBR experts. However, datasets are typically gathered as part of constructing a CBR or machine learning system. These datasets are assumed to contain the features that correctly identify the solution from the problem features; thus, they may also contain the knowledge to construct or learn such a similarity measure. The main motivation for this work is to automate the construction of similarity measures using machine learning. Additionally, we would like to do this while keeping training time as low as possible. Working toward this, our objective is to investigate how to apply machine learning to effectively learn a similarity measure. Such a learned similarity measure could be used for CBR systems, but also for clustering data in semi-supervised learning, or one-shot learning tasks. Recent work has advanced toward this goal which relies on either very long training times or manually modeling parts of the similarity measure. We created a framework to help us analyze the current methods for learning similarity measures. This analysis resulted in two novel similarity measure designs: The first design uses a pre-trained classifier as basis for a similarity measure, and the second design uses as little modeling as possible while learning the similarity measure from data and keeping training time low. Both similarity measures were evaluated on 14 different datasets. The evaluation shows that using a classifier as basis for a similarity measure gives state-of-the-art performance. Finally, the evaluation shows that our fully data-driven similarity measure design outperforms state-of-the-art methods while keeping training time low.

Funder

Research Council of Norway

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Reference33 articles.

1. Abdel-Aziz, A., Strickert, M., Hüllermeier, E.: Learning solution similarity in preference-based CBR. In: International Conference on Case-Based Reasoning, pp. 17–31. Springer, Berlin (2014)

2. Arandjelovic, R., Zisserman, A.: Look, listen and learn. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 609–617. IEEE (2017)

3. Bergmann, R.: Experience Management: Foundations, Development Methodology, and Internet-Based Applications. Springer, Berlin (2002)

4. Berlemont, S., Lefebvre, G., Duffner, S., Garcia, C.: Siamese neural network based similarity metric for inertial gesture classification and rejection. In: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 1, pp. 1–6. IEEE (2015)

5. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a” siamese” time delay neural network. In: Advances in neural information processing systems, pp. 737–744 (1994)

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3