1. Agibetov, A., Samwald, M.: Benchmarking neural embeddings for link prediction in knowledge graphs under semantic and structural changes. J. Web Semant. 64, 100590 (2020)
2. Berrendorf, M., Faerman, E., Melnychuk, V., Tresp, V., Seidl, T.: Knowledge graph entity alignment with graph convolutional networks: lessons learned. In: Jose, J.M., Yilmaz, E., Magalhães, J., Castells, P., Ferro, N., Silva, M.J., Martins, F. (eds.), Advances in Information Retrieval—42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14–17, 2020, Proceedings, Part II, Volume 12036 of Lecture Notes in Computer Science, pp. 3–11. Springer (2020)
3. de Coronado, S., Haber, M.W., Sioutos, N., Tuttle, M.S., Wright, L.W.: NCI thesaurus: using science-based terminology to integrate cancer research results. In: Fieschi, M., Coiera, E.W., Li, J.Y. (eds.), MEDINFO 2004—Proceedings of the 11th World Congress on Medical Informatics, San Francisco, California, USA, September 7–11, 2004, Volume 107 of Studies in Health Technology and Informatics, pp. 33–37. IOS Press (2004)
4. Do, H.H., Rahm, E.: COMA—a system for flexible combination of schema matching approaches. In: Proceedings of 28th International Conference on Very Large Data Bases, VLDB 2002, Hong Kong, August 20–23, 2002, pp. 610–621. Morgan Kaufmann (2002)
5. Donnelly, K.: Snomed-ct: the advanced terminology and coding system for ehealth. Stud. Health Technol. Inform. 121, 279 (2006)