Deep limitations? Examining expert disagreement over deep learning

Author:

Cremer Carla Zoe

Abstract

AbstractWe investigate expert disagreement over the potential and limitations of deep learning. We conducted 25 expert interviews to reveal the reasons and arguments that underlie the disagreement about the limitations of deep learning, here evaluated in respect to high-level machine intelligence. Experts in our sample named 40 limitations of deep learning. Using interview data, we identify and explore five crucial, unresolved research subjects that underpin this scholarly disagreement: abstraction, generalisation, explanatory models, emergence of planning and intervention. We suggest that such origins of disagreement can be used to form a research road map to guide efforts towards overcoming the limitations of deep learning.

Funder

Berkeley Existential Risk Initiative

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Reference42 articles.

1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539

2. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349, 255–260 (2015). https://doi.org/10.1126/science.aaa8415

3. McCarthy, J., Minsky, M.L., Rochester, N., Shannon, C.E.: A proposal for the Dartmouth summer research project on artificial intelligence, august 31, 1955. AI Mag. 27, 12–12 (2006). https://doi.org/10.1609/aimag.v27i4.1904

4. Sutskever, I. : Ilya Sutskever at AI Frontiers 2018: Recent Advances in Deep learning and AI from OpenAI.Progress towards the OpenAI mission LINK (2018). https://sqlandsiva.blogspot.com/2019/01/day-202-ilya-sutskever-at-ai-frontiers.html. Accessed 5 Apr 2021

5. Ord, T.: The Precipice: Existential Risk and the Future of Humanity. Bloomsbury, London (2020)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3