Fault diagnosis under uncertain situations within a Bayesian knowledge-intensive CBR system

Author:

Nikpour HodaORCID,Aamodt Agnar

Abstract

AbstractThis paper presents fault diagnosis and problem solving under uncertainty by a Bayesian supported knowledge-intensive case-based reasoning (CBR) system called BNCreek. In this system, the main goal is to diagnose the causal failures behind the symptoms in complex and uncertain domains. The system’s architecture is described in three aspects: the general, structural, and functional architectures. The domain knowledge is represented by formally defined methods. An integration of semantic networks, Bayesian networks, and CBR is employed to deal with the domain uncertainty. An experiment is conducted from the oil well drilling domain, which is a complex and uncertain area as an application domain. The system is evaluated against the expert estimations to find the most efficient solutions for the problems. The obtained results reveal the capability of the system in diagnosing causal failures.

Funder

NTNU

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Reference34 articles.

1. Fabre, E.: Bayesian networks of dynamic systems. Habilitation à diriger des recherches, Université de Rennes1 (2007)

2. Kirsch, H., Kroschel, K.: Applying Bayesian networks to fault diagnosis. In: Proceedings of the Third IEEE Conference on Control Applications, Vol. 2, pp. 895–900 (1994)

3. Yongli, Z., Limin, H., Jinling, L.: Bayesian networks-based approach for power systems fault diagnosis. IEEE Trans. Power Deliv. 21(2), 634–639 (2006)

4. Tirri, H., Kontkanen, P., Myllymäki, P.: A Bayesian framework for case-based reasoning. In: European Workshop on Advances in Case-Based Reasoning, pp. 413–427. Springer (1996)

5. Schiaffino, S.N., Amandi, A.: User profiling with case-based reasoning and Bayesian networks. In: IBERAMIA-SBIA 2000 Open Discussion Track, pp. 12–21 (2000)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3