1. Balacheff, N.: 1991, ?The benefits and limits of social interaction: the case of mathematical proof?, in A. J. Bishop, S. Mellin-Olsen, and J. van Dormolen (eds.), Thathematics Knowledge: Its Growth Through Teaching, Kluwer Academic Publishers, Dordrecht, pp. 175?192.
2. Barra, M., Ferrari, M., Furinghetti, F., Malara, N. A:, and Speranza, F.: 1992, ?The Italian research in mathematics education: Common roots and present trends?, Progetto Strategico del C. N. R. Tecnologie e Innovazioni Didattiche: Formazione e Aggiornamento in Matematica degli Insegnanti, n. 12.
3. Bartolini Bussi, M.: 1991, ?Social interaction and mathematical knowledge?, in F. Furinghetti (ed.), Proceedings of the 15th International PME Conference, vol. 1, Assisi (Italy), The Program Committee of the 15th PME Conference, pp. 1?16.
4. Bartolini Bussi, M.: 1994a, ?Theoretical and empirical approaches to classroom interaction?, in Biehler, Scholz, Strasser, and Winckelmann (eds.), Mathematics Didactics as a Scientific Discipline, Kluwer Academic Publishers, Dordrecht, pp. 121?132.
5. Materialien und Studien Band;M. Bartolini Bussi,1994