Abstract
AbstractNatural anaerobic biogeochemical processes used for passive treatment of AMD were observed in the extensive shallow water zone of a polymictic pit lake in the former German lignite district of Upper Palatinate. Although continuously fed by acidic metalliferous groundwater, lake-pH increased from 3.5 to circumneutral over a little more than 10 years. The natural attenuation processes were studied and quantified using a regional surface- and groundwater flow model linked with hydrochemical monitoring datasets to establish a simple mass balance. The acidity inflow was estimated at ≈ 5900 kmol over the period 2014–2018, which corresponds to an average inflow of ≈ 1190 kmol/a. This estimate is in very good accordance with an acidity inflow rate for the period 2000–2014 estimated from acidity deposition in the sediment based on sediment core analyses plus the calculated cumulative acidity outflow based on extrapolation of pre-neutralisation acidity levels in the pit lake, together yielding a total acidity of ≈ 15,000 kmol, which corresponds to an inflow rate of ≈ 960 kmol/a. The results strongly indicate that the pit lake self-neutralised due to beneficial environmental and ecological conditions, amplified and potentially initialised by the circumneutral discharge from a chemical mine water treatment plant, and that well-known biogeochemical mechanisms such as natural microbial sulfate reduction were the driving force. The results give rise to perspectives concerning the potential development of pit lakes if ecological considerations are considered.
Publisher
Springer Science and Business Media LLC
Subject
Geotechnical Engineering and Engineering Geology,Water Science and Technology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献