Properties and Stability of Mining-Induced Meromixis in Two Small Boreal Lakes in Eastern Finland

Author:

Kehusmaa KaroliinaORCID,Kauppila Tommi,Österholm Peter,Juntunen JanneORCID,Saarni Saija

Abstract

AbstractMine waters are a significant point source stressor for aquatic environments, not only due to their acidity and high metal concentrations, but also because of their high electrolyte concentrations. Ion-rich mine waters can disturb the seasonal mixing of lake waters, even leading to permanent stratification, i.e. meromixis. In this study, we investigated two small natural lakes receiving waters from closed Ni-Cu mines. To characterize the present chemical and physical conditions of these two boreal lakes, we collected water samples and in-situ water column measurements seasonally in 2017 and 2018. We modelled the stability of meromixis in the lakes under varying physico-chemical and meteorological conditions with the MATLAB-based open-source model code, MyLake. Chemical analyses and water column measurements show that both lakes are currently meromictic with a chemocline separating the circulating, well-oxygenated upper water from the non-circulating, hypoxic bottom water. The main anion was SO4 in both lakes, while the main cations were Ca, Mg, Na, and K. Elevated concentrations of conservative elements flowing from the mine areas are crucial in maintaining the meromixis. Modelling scenarios suggest that the meromixis would be sustained for several decades even if the external load ceased completely. Lake morphology and sheltered surroundings also seem to contribute to maintaining the meromixis in these lakes. Consequently, our results indicate that small headwaters are sensitive to persistent meromixis even when external loading is mild.

Funder

Maa- ja Vesitekniikan Tuki Ry

K. H. Renlunds stiftelse

University of Turku (UTU) including Turku University Central Hospital

Publisher

Springer Science and Business Media LLC

Subject

Geotechnical Engineering and Engineering Geology,Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Studies of soil degradation in Lower Guinea, impact on the environment and the health of the population;International Journal of Environmental Science and Technology;2024-05-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3