Overview of microbial communities in the surface water of the Seine River to understand their response to climate change and human activities

Author:

Bagagnan Sadia,Guerin-Rechdaoui Sabrina,Marconi Anthony,Rocher Vincent,Giusti-Miller Stéphanie,Moilleron Régis,Jusselme My DungORCID

Abstract

AbstractDiverse microbial communities play a crucial role in maintaining the proper functioning of river ecosystems and are considered important indicators of river water quality. Although the Seine River being heavily impacted by human activities, little is known about the microbial communities in its surface waters. In order to monitor water quality and promote sustainable use, we studied its microbial diversity using high-throughput sequencing technology, and explored their relationships with physico-chemical properties. The dominant phyla identified were Proteobacteria, Actinobacteriota, Bacteriodota, and Cyanobacteria. The presence of the Alphaproteobacteria and Gammaproteobacteria indicates that the Seine River water nutrient profile is mainly determined by the recalcitrant organic compounds present in WWTP effluents. Bacterial diversity showed significant temporal variability with a highly significant difference in bacterial composition between 2020 and 2021, probably due to variations in water flow favoring Cyanobacteria growth. Summer displayed higher microbial activity and abundance than autumn, attributed to temperature and orthophosphate content. Spatial variation in bacterial composition was observed between sites upstream and downstream of Paris, as well as before and after of the Seine Valenton-WWTP, subject to an accumulation phenomenon and impacted by wastewater treatment. Further assessment of emerging contaminants and other pollutants is required to better understand these variations. These results provide a basic understanding of the microbial community in the Seine River, serving as a reference for assessing the impact of implementing new wastewater disinfection techniques in the near future. Graphical abstract

Funder

Université Paris-Est Créteil

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3