MFLD-net: a lightweight deep learning network for fish morphometry using landmark detection

Author:

Saleh Alzayat,Jones David,Jerry Dean,Azghadi Mostafa RahimiORCID

Abstract

AbstractMonitoring the morphological traits of farmed fish is pivotal in understanding growth, estimating yield, artificial breeding, and population-based investigations. Currently, morphology measurements mostly happen manually and sometimes in conjunction with individual fish imaging, which is a time-consuming and expensive procedure. In addition, extracting useful information such as fish yield and detecting small variations due to growth or deformities, require extra offline processing of the manually collected images and data. Deep learning (DL) and specifically convolutional neural networks (CNNs) have previously demonstrated great promise in estimating fish features such as weight and length from images. However, their use for extracting fish morphological traits through detecting fish keypoints (landmarks) has not been fully explored. In this paper, we developed a novel DL architecture that we call Mobile Fish Landmark Detection network (MFLD-net). We show that MFLD-net can achieve keypoint detection accuracies on par or even better than some of the state-of-the-art CNNs on a fish image dataset. MFLD-net uses convolution operations based on Vision Transformers (i.e. patch embeddings, multi-layer perceptrons). We show that MFLD-net can achieve competitive or better results in low data regimes while being lightweight and therefore suitable for embedded and mobile devices. We also provide quantitative and qualitative results that demonstrate its generalisation capabilities. These features make MFLD-net suitable for future deployment in fish farms and fish harvesting plants.

Funder

James Cook University

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Reference46 articles.

1. Bahdanau D, Cho KH, Bengio Y (2015) Neural machine translation by jointly learning to align and translate. In: 3rd international conference on learning representations, ICLR 2015 - Conference Track Proceedings

2. Bello I, Zoph B, Le Q, Vaswani A, Shlens J (2019) Attention augmented convolutional networks. In: Proceedings of the IEEE international conference on computer vision, volume 2019-Octob, pp 3285–3294

3. Buslaev A, Iglovikov VI, Khvedchenya E, Parinov A, Druzhinin M, Kalinin AA (2020) Albumentations: Fast and flexible image augmentations. Information (Switzerland), 11(2)

4. Castrillo PA, Varela-Dopico C, Bermúdez R, Ondina P, Quiroga MI (2021) Morphopathology and gill recovery of Atlantic salmon during the parasitic detachment of Margaritifera margaritifera. J Fish Dis 44:1101–1115

5. Cohen N, Shashua A (2017) Inductive bias of deep convolutional networks through pooling geometry. In: 5th International conference on learning representations, ICLR 2017 - Conference Track Proceedings

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3