Responses of grasses to experimental submergence in summer: implications for the management of unseasonal flows in regulated rivers

Author:

Vivian Lyndsey M.ORCID,Greet Joe,Jones Christopher S.

Abstract

AbstractRiver regulation has altered the seasonal timing of flows in many rivers worldwide, impacting the survival and growth of riparian plants. In south-eastern Australia, demand for irrigation water in summer often results in high river flows during a season that would naturally experience low flows. Although unseasonal high summer flows are thought to significantly impact waterways, their effects on vegetation are poorly quantified. We investigated the responses of five grass species commonly occurring in riparian zones to different durations of submergence in summer. We experimentally tested the response of three exotic and two native grasses to four submergence treatments (4 weeks, 8 weeks, 2-week pulses and no submergence), and two levels of shading (no shading and 80% light reduction), over 8 weeks in summer and early autumn. All submergence treatments, including the 2-week pulse, resulted in the death of all plants of three species (Bromus catharticus, Dactylis glomerata and Rytidosperma caespitosum). Lolium perenne exhibited moderate survival rates in the shorter-duration unshaded submergence treatments, while Poa labillardierei largely survived all treatments. Similar responses across species were observed for plant height and biomass, although height generally increased while biomass growth was reduced by shading. These results show that even 2-week periods of summer submergence can reduce growth and cause the death of some riparian grasses. Although some species may survive longer submergence durations, impacts on other aspects of fitness, and ongoing effects of repeated unseasonal submergence, remain uncertain. Our study highlights that the impacts of unseasonal flows require further investigation and careful management.

Funder

State Government of Victoria

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3