The effects of temperature on plasticity, shape symmetry and seasonal variation in the freshwater benthic green microalga Micrasterias thomasiana

Author:

Neustupa JiriORCID,Woodard KaterinaORCID

Abstract

AbstractDesmids are usually abundant in shallow peatland pools. In these localities, water temperature is closely linked to seasonal fluctuations in air temperature, so with increasing temperature extremes in temperate ecosystems, these microalgae are exposed to conditions of high-temperature stress. We investigated whether the shape, size, and growth rates of Micrasterias thomasiana, a frequently occurring species, are associated with varying temperatures in cultures and natural populations. The research was based on parallel analysis of clonal populations in temperature levels from 13 to 33 °C as well as cells from natural populations collected during the season. The effects of high temperature on morphological plasticity and fluctuating asymmetry in the shape of cellular parts were investigated by the landmark-based geometric morphometrics. The results showed that variation among individuals and fluctuating asymmetry between the lateral lobes of Micrasterias cells increased at 29 °C and in natural samples taken in July and October. In parallel, the size of semicells growing at temperatures above 25 °C decreased compared to those grown at lower temperatures. However, the temperature effects on shape and size were not directly related to the growth rates. The overall bilateral asymmetry between semicell halves did not change in relation to varying temperatures. In general, the results showed that morphological variation in natural populations of M. thomasiana reflected seasonal cycles and corresponded to plasticity associated with temperature changes in clonal cultures. It might therefore be possible to use these phenotypic markers as indicators of thermal stress in natural populations inhabiting shallow pools in peatlands.

Funder

Grantová Agentura České Republiky

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3