Reciprocal stream–riparian fluxes: effects of distinct exposure patterns on litter decomposition

Author:

Simões S.ORCID,Gonçalves A. L.,Jones T. Hefin,Sousa J. P.,Canhoto C.

Abstract

AbstractResource fluxes at the stream–riparian interface are a vital contributor to both systems’ energy budgets. The effect of distinct litter exposure patterns—direction of the riparia–stream movement and duration of exposure at each habitat—however, remains to be elucidated. In this field experiment, oak leaves in fine and coarse mesh bags were either exposed to a stream-to-riparia or riparia-to-stream movement sequence for distinct periods (2:6, 4:4, or 6:2 weeks). After 8 weeks, ash-free mass loss, microbial activity, and fungal biomass were compared in leaves undergoing inverse movement sequences (e.g., 2-week exposure to the riparian area at the beginning vs. end of the colonization period). Mass loss in coarse mesh bags was negatively affected when leaves were previously exposed to a short (2 weeks) terrestrial pre-conditioning period, despite higher microbial activity and fungal biomass, when compared to the inverse movement. This effect on mass loss was neutralized by longer terrestrial exposures that likely allowed for a more thorough conditioning of the leaves, through extended leaching and terrestrial microbial colonization. Our results suggest that terrestrial pre-conditioning periods of < 2 weeks lead to litter-quality legacy effects in tough leaves, to which aquatic communities respond through lower substrate degradation efficiency, hindering stream decomposition. Contrastingly, oak aquatic pre-conditioning, regardless of duration, provides riparian communities with a high-quality resource, promoting litter processing through grazing behavior. As climate-induced hydrological shifts may result in altered provision/quality of detritus subsidies at the stream–riparia interface, we suggest that assessments of decomposition dynamics should consider the entire litter conditioning history.

Funder

FCT

FCT/MCTES

Programa Operacional Regional do Centro

Universidade de Coimbra

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3